# Heat Capacity and Thermodynamic Functions of K<sub>2</sub>CuCl<sub>4</sub> • 2H<sub>2</sub>O and (NH<sub>4</sub>)<sub>2</sub>CuCl<sub>4</sub>·2H<sub>2</sub>O from 13 to 310°K\*

By Hiroshi Suga, Michio Sorai, Tadashi Yamanaka\*\* and Syûzô Seki

(Received November 4, 1964)

There have been many investigations of the orientational order-disorder phenomena ammonium ions in the crystalline state. Among these, the most comprehensive have been those of ammonium halides. In the case of ammonium chloride, it has been revealed from various experimental facts1-4) and from theoretical considerations<sup>5)</sup> that a λ-type anomaly at  $-38^{\circ}$ C in the heat capacity curve can be explained by the co-operative transition from an uniquely defined orientational state to two equally-probable states with respect to the NH<sub>4</sub><sup>+</sup> ion.

X-Ray structural study of the (NH<sub>4</sub>)<sub>2</sub>CuCl<sub>4</sub>· 2H<sub>2</sub>O crystal<sup>6</sup> shows that the crystal lattice is, roughly speaking, composed of three units NH4+, Cl-, and CuCl2·2H2O, with the result that the inter-ammonium distance of ammonium chloride is enlarged two-dimensionally by the introduction of CuCl<sub>2</sub>·2H<sub>2</sub>O. It will, therefore, be of some interest to study an orientational ordering process of such a linearly-arranged ammonium ion system and to compare the results with those of an isotropically-arranged one found in ammonium chloride.

The present paper will report on the thermodynamic properties of (NH<sub>4</sub>)<sub>2</sub>CuCl<sub>4</sub>·2H<sub>2</sub>O and K2CuCl4·2H2O crystals from 13 to 310°K. The latter crystal was selected as a reference material because it belongs to the same crystal system (D<sub>4h</sub>-P4/mnm) as the former and involves a spherical cation, K+, with an ionic radius nearly equal to that of the NH4+ ion.

### Experimental and Results

The Preparation of Samples.—The potassium copper chloride dihydrate, K<sub>2</sub>CuCl<sub>4</sub>·2H<sub>2</sub>O, is

\* Presented in part at the 15th Annual Meeting of the Chemical Society of Japan, Kyoto, April, 1962.

the double salt of KCl and CuCl<sub>2</sub>·2H<sub>2</sub>O, while the ammonium copper chloride dihydrate, (NH<sub>4</sub>)<sub>2</sub>CuCl<sub>4</sub>·2H<sub>2</sub>O, is that of NH<sub>4</sub>Cl and  $CuCl_2 \cdot 2H_2O$ .  $(NH_4)_2CuCl_4 \cdot 2H_2O$   $(NH_4-salt)$ was prepared from a mixed solution of their component substances and was purified by repeated recrystallizations.7) In the case of K<sub>2</sub>CuCl<sub>4</sub>·2H<sub>2</sub>O (K-salt), the crystal was prepared according to the phase diagram<sup>8)</sup> of the KCl-CuCl<sub>2</sub>-H<sub>2</sub>O system. Commercial analytical reagents of the Wakō Pure Chemical Industry Company were used for the preparation.

Differential Thermal Analysis.—The freshly prepared specimens of NH<sub>4</sub>-salt are reported to exhibit a thermal anomaly at about  $-22^{\circ}$ C on cooling.9) This anomaly is due to the freezing of occluded water, since there is no thermal anomaly in partly-dehydrated samples. In order to eliminate the excess water, the sample was dried over partly-dehydrated NH<sub>4</sub>salt in a desiccator for several weeks. In order to determine the temperature of dehydration, differential thermal analysis (DTA) and thermogravimetric analysis (TGA) methods were applied to both crystals; some interesting features due to the process of dehydration were thus found. The results are shown in Fig. 1. As the temperature is raised, K-salt exhibits two apparently separate peaks, at about 93°C and 116°C. In the case of NH<sub>4</sub>salt, however, only one peak appears, at about 143.5°C, with a shoulder at 138°C.

Meyerhoffer<sup>10)</sup> has found, from dilatometric study, a phase change for K-salt at 92.4°C and has suggested the following decomposition mechanism\*:

 $K_2CuCl_4 \cdot 2H_2O \rightleftharpoons KCuCl_3 + KCl + 2H_2O$ 

Present address: Research Laboratory, Division, Matsushita Electric Industrial, Co., Ltd., Kadoma, Osaka.

<sup>1)</sup> F. Simon, Ann. d. Phys., 68, 241 (1922).

<sup>2)</sup> H. S. Gutowsky, G. E. Pake and R. Bersohn, J. Chem. Phys., 22, 634 (1954).

<sup>3)</sup> E. L. Wagner and D. F. Hornig, ibid., 18, 296 (1950). 4) H. A. Levy and S. W. Peterson, Phys. Rev., 86, 766 (1952); G. H. Goldschmidt and D. G. Hurst, ibid., 83, 88 (1951); 86, 797 (1952).

<sup>5)</sup> Y. Nagamiya, Proc. Phys. Math. Soc. Japan, 24, 137 (1942).

<sup>6)</sup> L. Chrobak, Z. Krist., 88, 35 (1934); A. Narasimhamurty and D. Premaswarup, Proc. Phys. Soc., 83, 199 (1964).

<sup>7)</sup> A. Seidell, "Solubilities of Inorganic and Organic Compounds," Vol. I, 3rd. Ed., Van Nostrand Co., New York (1940).

<sup>8)</sup> A. Chretien and R. Weil, Bull. Soc. Chim., 2, 1577 (1935).

<sup>9)</sup> N. Nakamura, H. Suga and S. Seki, presented at the 14th Annual Meeting of the Chemical Society of Japan, Tokyo, April, 1961.

<sup>10)</sup> W. Meyerhoffer, Z. physik. Chem., 3, 336 (1887).
\* This decomposition mechanism was recently confirmed by us from Debye-Scherrer photographs taken below and above 93°C. Fairly intensive diffraction lines ascribed to KCl crystal appeared on the photograph taken at about 100°C. We are greatly indebted to Mr. Takemi Yamada of our University for his kind arrangements for taking high-temperature X-ray photographs.

This mechanism was also verified by Vriens<sup>11)</sup> from vapor pressure measurements of K-salt and saturated solutions containing K-salt, KCl and KCuCl<sub>3</sub>. This transition corresponds just to the first peak in the DTA curve. released water dissolves parts of the crystals and forms a saturated solution, so shat the solution evaporates at a much higher temperature than does the free water. The second peak which appeared on the DTA curve seems to correspond to the evaporation process, because its temperature depends markedly on the pressure of the surroundings. The temperature of the first peak, on the other hand, is almost not influenced at all when the pressure is reduced to 350 mmHg. The thermo-gravimetric analysis of K-salt revealed that the weight of the sample is the same, within the range of experimental error, before and after the first peak I, corresponding to the A- and B-stages in Fig. 1(a) respectively. However, when

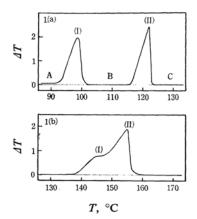



Fig. 1. Curves of the differential thermal analysis: 1(a) for K<sub>2</sub>CuCl<sub>4</sub>·2H<sub>2</sub>O and 1(b) for (NH<sub>4</sub>)<sub>2</sub>CuCl<sub>4</sub>·2H<sub>2</sub>O.

passing through the second peak II, at the C-stage in the figure, the sample loses weight nearly equal in amount to the crystalline water involved. From these facts we may regard the phase changes at the I and II peaks to be as follows:

(I) 
$$K_2CuCl_4 \cdot 2H_2O \rightarrow KCuCl_3 + KCl + 2H_2O$$
 (satd. soln.)

## (II) $2H_2O$ (satd. soln.) $\rightarrow 2H_2O$ (vapor)

The occurrence of extra peaks in the DTA curve of hydrates due to the formation of a saturated solution is not uncommon.<sup>12</sup>

In the case of NH<sub>4</sub>-salt, the first peak appears on a shoulder of the second, so that a similar TGA method can not be applied to this salt. From the fact that the crystal structure of NH<sub>4</sub>-salt is isomorphous with that of K-salt, we may also assume similar phase changes at the two successive peaks.

The Heat Capacity of (NH<sub>4</sub>)<sub>2</sub>CuCl<sub>4</sub>·2H<sub>2</sub>O and K<sub>2</sub>CuCl<sub>4</sub>·2H<sub>2</sub>O. — The low temperature calorimeter and the method of measurement are the same as those described in the previous report.<sup>13)</sup> The calorimeter contains 26.967 g. (0.09719 mol.) of (NH<sub>4</sub>)<sub>2</sub>CuCl<sub>4</sub>·2H<sub>2</sub>O and 31.127 g. (0.09740 mol.) of K<sub>2</sub>CuCl<sub>4</sub>·2H<sub>2</sub>O with helium exchange gas, respectively, in each experiment,

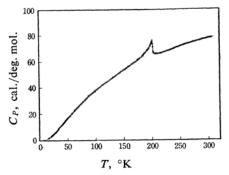



Fig. 2. Heat capacities of (NH<sub>4</sub>)<sub>2</sub>CuCl<sub>4</sub>·2H<sub>2</sub>O-between the temperature range from 13°K to 310°K.

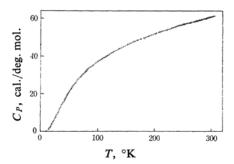



Fig. 3. Heat capacities of K<sub>2</sub>CuCl<sub>4</sub>·2H<sub>2</sub>O between the temperature range from 13°K to 310°K.

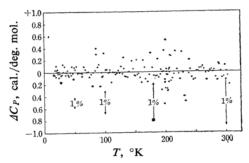



Fig. 4. Deviation of experimental heat capacities of (NH<sub>4</sub>)<sub>2</sub>CuCl<sub>4</sub>·2H<sub>2</sub>O from a smoothed curve.

J. G. C. Vriens, Z. physik. Chem., 7, 194 (1891).
 H. J. Borchardt and F. Daniels, J. Am. Chem. Soc., 61, 917 (1957).

<sup>13)</sup> H. Suga and S. Seki, This Bulletin, 38, 1000, (1965).

Table I. Heat capacities of (NH<sub>4</sub>)<sub>2</sub>CuCl<sub>4</sub>·2H<sub>2</sub>O

| $^{T_{\mathrm{av}}}_{\circ \mathrm{K}}$ | Approx. $\Delta T$ | $\Delta H/\Delta T$ cal./deg.mol. | $T_{\mathrm{av}} \circ \mathbf{K}$ | Approx. $\Delta T$ | $\Delta H/\Delta T$     |
|-----------------------------------------|--------------------|-----------------------------------|------------------------------------|--------------------|-------------------------|
|                                         | Series I           | car., deg.mor.                    | 203.98                             | 1.261              | cal./deg.mol.<br>66.482 |
| 155.34                                  | 2.458              | 55.634                            | 203.50                             |                    | 00.402                  |
| 157.79                                  | 2.437              | 56.296                            | 197.39                             | Series IV          | 71.044                  |
| 165.38                                  | 2.605              | 58.679                            |                                    | 1.200              | 71.944                  |
| 167.97                                  | 2.584              | 59.336                            | 198.59<br>199.77                   | 1.186              | 73.194                  |
| 173.10                                  | 2.534              | 60.998                            |                                    | 1.168              | 74.836                  |
| 178.23                                  | 2.550              | 62.867                            | 200.94                             | 1.169              | 74.834                  |
| 180.78                                  | 2.527              | 63.679                            | 202.14                             | 1.242              | 68.118                  |
| 183.30                                  | 2.499              | 64.724                            |                                    | Series V           |                         |
| 185.79                                  | 2.471              | 65.796                            | 62.62                              | 2.650              | 23.548                  |
| 189.27                                  | 2.508              | 67.220                            | 67.74                              | 2.455              | 25.857                  |
| 191.77                                  | 2.479              | 68.580                            | 72.51                              | 2.306              | 27.940                  |
| 196.71                                  | 2.401              | 71.949                            | 77.02                              | 2.189              | 29.785                  |
| 199.09                                  | 2.353              | 74.057                            | 81.92                              | 2.078              | 31.818                  |
| 201.47                                  | 2.407              | 71.516                            | 87.94                              | 1.963              | 34.241                  |
| 206.55                                  | 2.528              | 66.219                            | 94.21                              | 2.065              | 36.417                  |
| 211.62                                  | 2.524              | 66.209                            | 96.26                              | 2.037              | 37.067                  |
| 219.39                                  | 2.499              | 67.186                            |                                    | Series VI          |                         |
| 221.89                                  | 2.492              | 67.424                            | 15.38                              | 2.545              | 1.230                   |
| 229.43                                  | 2.613              | 68.580                            | 17.72                              | 1.812              | 2.066                   |
| 236.88                                  | 2.427              | 69.763                            | 21.78                              | 2.571              | 3.691                   |
| .241.78                                 | 2.547              | 70.638                            | 22.82                              | 2.253              | 4.114                   |
| .246.85                                 | 2.528              | 71.263                            | 26.21                              | 1.785              | 5.452                   |
| 251.43                                  | 2.507              | 72.148                            | 28.31                              | 2.247              | 6.392                   |
| 258.91                                  | 2.479              | 73.135                            | 30.71                              | 2.547              | 7.816                   |
| .268.66                                 | 2.511              | 74.141                            | 33.23                              | 2.505              | 9.008                   |
| 276.00                                  | 2.423              | 75.181                            | 35.64                              | 2.243              | 10.159                  |
| 288.03                                  | 2.390              | 76.401                            | 38.00                              | 2.419              | 11.379                  |
| 291.42                                  | 2.425              | 76.792                            | 42.85                              | 2.752              | 13.794                  |
| 293.85                                  | 2.417              | 77.084                            | 45.48                              | 2.528              | 15.240                  |
| 305.86                                  | 2.390              | 78.102                            | 48.29                              | 2.355              | 16.436                  |
| .303.80                                 | Series II          | 76.102                            | 50.57                              | 2.218              | 17.628                  |
| 95.90                                   | 2.421              | 37.099                            | 52.96                              | 2.588              | 18.853                  |
| 100.66                                  | 2.342              | 38.739                            | 55.49                              | 2.456              | 20.016                  |
| 100.00                                  | 2.307              | 39.526                            | 57.89                              | 2.341              | 21.214                  |
| 102.98                                  | 2.275              | 40.249                            | 60.18                              | 2.245              | 22.313                  |
| 103.27                                  | 2.243              | 41.026                            | 62.38                              | 2.160              | 23.358                  |
| 121.36                                  | 2.553              | 45.345                            | 02.00                              | Series VII         |                         |
| 123.89                                  | 2.523              | 46.073                            | 15.15                              | 1.998              | 1.146                   |
| 128.88                                  | 2.464              | 47.592                            | 17.34                              | 1.825              | 1.857                   |
| 130.73                                  | 1.220              | 48.259                            | 19.33                              | 1.768              | 2.555                   |
| 132.56                                  | 2.301              | 48.731                            | 21.06                              | 1.412              | 3.354                   |
| 134.85                                  | 2.278              | 49.410                            | 22.79                              | 1.774              | 4.058                   |
| 139.36                                  | 2.231              | 50.898                            | 24.49                              | 1.432              | 4.835                   |
| 141.66                                  | 2.364              | 51.997                            | 25.94                              | 1.331              | 5.460                   |
| 146.34                                  | 2.326              |                                   | 27.57                              | 1.846              | 6.168                   |
| 150.95                                  | 2.287              | 53.114<br>54.370                  | 29.50                              | 1.997              | 7.093                   |
| 153.23                                  | 2.267              |                                   |                                    | 1.788              | 8.025                   |
| 133.23                                  | Series III         | 55.017                            | 31.40                              | 1.904              | 8.917                   |
| 192.52                                  | 2.467              | 60 114                            | 33.24                              |                    |                         |
| 192.32                                  | 2.431              | 69.114<br>70.589                  | 35.28                              | 2.197              | 9.913                   |
| 194.97                                  | 1.174              |                                   | 37.37                              | 2.005              | 11.018                  |
| 200.32                                  | 1.174              | 74.175<br>75.825                  | 39.57                              | 2.412              | 12.102                  |
| 200.32                                  | 1.202              |                                   | 41.88                              | 2.220              | 13.261                  |
| .201.30                                 | 1.253              | 71.568<br>67.151                  | 44.33                              | 2.681<br>2.488     | 14.515                  |
| .202.72                                 | 1.233              | 07.131                            | 46.91                              | 2.400              | 15.843                  |

TABLE II. HEAT CAPACITIES OF K2CuCl4.2H2O

| TABLE II. HEAT CAPACITIES OF K2CUCI4.2H2O            |                    |                                   |                                                                                      |                    |                                   |  |
|------------------------------------------------------|--------------------|-----------------------------------|--------------------------------------------------------------------------------------|--------------------|-----------------------------------|--|
| $^{T_{\mathbf{a}\mathbf{v}}}_{{}^{\circ}\mathbf{K}}$ | Approx. $\Delta T$ | $\Delta H/\Delta T$ cal./deg.mol. | $\begin{smallmatrix} T_{\mathbf{a}\mathbf{v}} \\ \circ \mathbf{K} \end{smallmatrix}$ | Approx. $\Delta T$ | $\Delta H/\Delta T$ cal./deg.mol. |  |
|                                                      | Series I           |                                   | 68.39                                                                                | 2.281              | 28.551                            |  |
| 90.40                                                | 2.229              | 35.221                            | 70.64                                                                                | 2.229              | 29.226                            |  |
| 94.81                                                | 2.174              | 36.239                            | 75.08                                                                                | 2.286              | 30.715                            |  |
| 99.11                                                | 2.126              | 37.159                            | 77.35                                                                                | 2.240              | 31.385                            |  |
| 105.39                                               | 2.068              | 38.335                            | 79.57                                                                                | 2.202              | 31.874                            |  |
| 109.91                                               | 2.309              | 39.191                            | 81.76                                                                                | 2.162              | 32.610                            |  |
| 114.47                                               | 2.269              | 40.023                            | 83.91                                                                                | 2.128              | 33.157                            |  |
| 121.18                                               | 2.210              | 41.395                            | 86.02                                                                                | 2.091              | 33.886                            |  |
| 125.68                                               | 2.389              | 42.205                            | 88.10                                                                                | 2.062              | 34.450                            |  |
| 129.30                                               | 2.357              | 42.902                            |                                                                                      | Series III         |                                   |  |
| 136.32                                               | 2.315              | 43.753                            | 21.41                                                                                | 1.296              | 4.343                             |  |
| 143.29                                               | 2.434              | 44.909                            | 24.09                                                                                | 3.894              | 5.821                             |  |
| 152.94                                               | 2.374              | 46.357                            | 27.50                                                                                | 3.000              | 7.769                             |  |
| 157.68                                               | 2.350              | 46.958                            | 30.27                                                                                | 2.538              | 9.340                             |  |
| 164.83                                               | 2.632              | 47.944                            | 32.65                                                                                | 2.216              | 10.957                            |  |
| 172.67                                               | 2.539              | 48.879                            | 34.76                                                                                | 1.998              | 12.255                            |  |
| 177.83                                               | 2.567              | 49.537                            | 36.86                                                                                | 2.216              | 13.636                            |  |
| 188.01                                               | 2.524              | 50.668                            | 39.00                                                                                | 2.043              | 14.861                            |  |
| 197.02                                               | 2.493              | 51.571                            | 40.98                                                                                | 1.910              | 15.958                            |  |
| 204.47                                               | 2.469              | 52.170                            | 43.10                                                                                | 2.337              | 17.077                            |  |
| 214.28                                               | 2.425              | 53.480                            | 45.37                                                                                | 2.185              | 18.358                            |  |
| 219.14                                               | 2.415              | 53.740                            | 47.51                                                                                | 2.056              | 19.619                            |  |
| 223.96                                               | 2.399              | 54.218                            | 49.70                                                                                | 2.316              | 20.480                            |  |
| 235.96                                               | 2.360              | 55.426                            | 54.12                                                                                | 2.109              | 22.647                            |  |
| 240.88                                               | 2.565              | 55.870                            | 56.31                                                                                | 2.242              | 23.557                            |  |
| 248.58                                               | 2.554              | 56.054                            | 58.51                                                                                | 2.159              | 24.541                            |  |
| 256.35                                               | 2.762              | 56.827                            | 60.64                                                                                | 2.087              | 25.474                            |  |
| 261.81                                               | 2.729              | 57.807                            | 62.70                                                                                | 2.028              | 26.227                            |  |
| 267.25                                               | 2.714              | 58.150                            | 64.90                                                                                | 2.343              | 27.121                            |  |
| 278.06                                               | 2.688              | 58.783                            |                                                                                      | Series IV          |                                   |  |
| 280.75                                               | 2.679              | 59.029                            | 16.41                                                                                | 2.486              | 1.951                             |  |
| 286.11                                               | 2.657              | 59.706                            | 18.62                                                                                | 1.806              | 3.060                             |  |
| 288.77                                               | 2.651              | 59.831                            | 20.39                                                                                | 1.478              | 3.872                             |  |
| 291.43                                               | 2.646              | 59.954                            | 20.37                                                                                |                    | 3.072                             |  |
| 294.08                                               | 2.637              | 60.219                            |                                                                                      | Series V           |                                   |  |
| 296.73                                               | 2.631              | 60.371                            | 15.15                                                                                | 2.985              | 1.502                             |  |
| 299.37                                               | 2.622              | 60.629                            | 17.67                                                                                | 2.059              | 2.569                             |  |
| 302.00                                               | 2.614              | 60.852                            | 19.56                                                                                | 1.545              | 3.840                             |  |
| C1 44                                                | Series II          |                                   | 21.49                                                                                | 1.833              | 4.385                             |  |
| 61.44                                                | 2.102              | 25.837                            | 23.25                                                                                | 1.533              | 5.421                             |  |
| 63.69                                                | 2.424              | 26.622                            | 24.75                                                                                | 1.349              | 6.240                             |  |
| 66.08                                                | 2.336              | 27.844                            | 26.07                                                                                | 1.212              | 7.050                             |  |

The experimental heat capacities listed in Tables I and II are the ratios of the increase in enthalpy,  $\Delta H$ , to the rise in temperature,  $\Delta T$ , and are equal to the differential heat capacity,  $C_P$ , only when the correction for curvature is negligible. Here, a defined calorie equal to 4.1840 absolute joules is used, and the ice point temperature is taken as 273.15°K. Also listed in Tables I and II are  $T_{\rm av}$ , the arithmetic mean of the initial and final temperatures of each measurement, and the approximate temperature rise,  $\Delta T$ . The experimental heat capacities and the smoothed curves

of both crystals are shown in Figs. 2 and 3.<sup>14</sup> The deviation plot of measured points from the smoothed curve are given in Fig. 4 for the sake of reference.

As is shown in Fig. 2, the (NH<sub>4</sub>)<sub>2</sub>CuCl<sub>4</sub>·2H<sub>2</sub>O crystal exhibits a heat capacity maximum at 200.50°K. The shape of the heat capacity curve around this temperature is similar to that of

<sup>14)</sup> The only heat capacity data on K-salt available for comparison is given by Kopp ("Landolt-Börnstein Physikalisch-Chemische Tabellen II," Berlin, 1923), whose value, 63.0 cal./deg. mol. at about 35°C, lies on the extrapolated curve of the present data.

TABLE III. THERMODYNAMIC PROPERTIES OF (NH<sub>4</sub>)<sub>2</sub>CuCl<sub>4</sub>·2H<sub>2</sub>O (in cal./deg. mol.)

 $(H^0-H^0_{\Omega}) - (G_0-H^0_{\Omega})$ T. °K  $C_{P}^{0}$  $S^0$ 0.099 0.102 10 0.3220.201 15 1.152 0.458 0.292 0.16620 2.902 0.714 0.302 1.016 25 0.526 5.052 1.890 1.364 30 3.014 2.169 0.8457.358 40 12.364 5.807 4.085 1.722 6.247 2.861 50 17.342 9.108 22.248 12.701 8.052 4.199 60 70 26.838 16.479 10.796 5.683 80 31.052 20.340 13.067 7.273 90 34.935 24.224 15.283 8.941 100 38.478 28.088 17.426 10.662 41.782 31.913 19.492 12.421 110 44.900 35.683 21.481 14.202 120 130 47.968 39.398 23.400 15.998 140 51.094 43.088 25.267 17.821 54.182 45.999 27.092 18.907 150 57.060 49.585 28.873 20.712 160 22.515 170 60.080 53.134 30.619 180 63.437 56.659 32.345 24.314 190 67.762 60.201 34.092 26.109 75.378 63.838 35.934 27.904 200 200.50 76.290 Transition point 210 66.220 67.150 37.453 29.697 70.249 38.780 31.469 220 67.190 230 68.675 73.268 40.046 33.222 240 70.300 76.225 41.273 34.952 71.855 79.127 42.466 36.661 250 73.205 81.972 43.623 38.349 260 270 74.432 84.758 44.741 40.017 280 75.614 87.487 45.823 41.664 290 76.752 90.160 46.870 43.290 47.701 298.15 77.588 92.302 44.601

the aniline hydrobromide crystal<sup>15)</sup> at the  $\lambda$ -point, indicating that the phase transition is of a higher order. On the other hand, the  $K_2CuCl_4\cdot 2H_2O$  crystal does not show any thermal anomaly over the entire temperature range investigated.

Thermodynamic Propertier of (NH<sub>4</sub>)<sub>2</sub>CuCl<sub>4</sub>· 2H<sub>2</sub>O and K<sub>2</sub>CuCl<sub>4</sub>·2H<sub>2</sub>O.—The values of the heat capacity, entropy, enthalpy and NH<sub>4</sub>-salt free energy function for and K-salt have been derived from perimental heat capacities with the standard technique; they are summarized in Tables III and IV. The extrapolation to 0°K was made by using the Debye formula. The error of the smoothed heat capacity data is estimated to be  $\pm 1\%$  below 60°K and  $\pm 0.3\%$  above 60°K. The values of entropy and free energy listed

TABLE IV. THERMODYNAMIC PROPERTIES OF K<sub>2</sub>CuCl<sub>4</sub>·2H<sub>2</sub>O (in cal./deg. mol.)

|               |         |                  |                         | -                                                                                               |
|---------------|---------|------------------|-------------------------|-------------------------------------------------------------------------------------------------|
| <i>T</i> , °K | $C_P^0$ | S <sup>0</sup> - | $\frac{(H^0-H_0^0)}{T}$ | $\frac{-(G^{\scriptscriptstyle 0}\!-\!H^{\scriptscriptstyle 0}_{\scriptscriptstyle \rm O})}{T}$ |
| 10            | 0.484   | 0.226            | 0.149                   | 0.077                                                                                           |
| 15            | 1.463   | 0.579            | 0.401                   | 0.178                                                                                           |
| 20            | 3.650   | 1.276            | 0.920                   | 0.356                                                                                           |
| 25            | 6.322   | 2.372            | 1.875                   | 0.497                                                                                           |
| 30            | 9.260   | 3.783            | 2.860                   | 0.923                                                                                           |
| 40            | 15.448  | 7.312            | 5.249                   | 2.063                                                                                           |
| 50            | 20.758  | 11.354           | 7.843                   | 3.511                                                                                           |
| 60            | 25.210  | 15.541           | 10.374                  | 5.167                                                                                           |
| 70            | 29.040  | 19.726           | 12.777                  | 6.949                                                                                           |
| 80            | 32.188  | 23.812           | 15.010                  | 8.802                                                                                           |
| 90            | 35.090  | 27.774           | 17.083                  | 10.691                                                                                          |
| 100           | 37.320  | 31.593           | 19.001                  | 12.592                                                                                          |
| 110           | 39.285  | 35.243           | 20.757                  | 14.486                                                                                          |
| 120           | 41.148  | 38.741           | 22.378                  | 16.363                                                                                          |
| 130           | 42.900  | 42.106           | 23.891                  | 18.215                                                                                          |
| 140           | 44.484  | 45.344           | 25.306                  | 20.038                                                                                          |
| 150           | 45.932  | 48.463           | 26.634                  | 21.829                                                                                          |
| 160           | 47.310  | 51.472           | 27.883                  | 23.589                                                                                          |
| 170           | 48.580  | 54.378           | 29.064                  | 25.314                                                                                          |
| 180           | 49.760  | 57.188           | 30.181                  | 27.007                                                                                          |
| 190           | 50.900  | 59.909           | 31.242                  | 28.667                                                                                          |
| 200           | 51.880  | 62.545           | 32.249                  | 30.296                                                                                          |
| 210           | 52.840  | 65.100           | 33.207                  | 31.893                                                                                          |
| 220           | 53.790  | 67.580           | 34.120                  | 33.460                                                                                          |
| 230           | 54.720  | 69.992           | 34.996                  | 34.996                                                                                          |
| 240           | 55.646  | 72.340           | 35.837                  | 36.503                                                                                          |
| 250           | 56.550  | 74.630           | 36.648                  | 37.982                                                                                          |
| 260           | 57.418  | 76.872           | 37.430                  | 39.442                                                                                          |
| 270           | 58.265  | 78.955           | 38.186                  | 40.769                                                                                          |
| 280           | 59.120  | 81.190           | 38.918                  | 42.272                                                                                          |
| 290           | 59.920  | 83.279           | 39.629                  | 43.650                                                                                          |
| 298.15        | 60.524  | 84.950           | 40.194                  | 44.756                                                                                          |
|               |         |                  |                         |                                                                                                 |

in Tables III and IV do not include the magnetic contributions from copper ions. Haseda<sup>16</sup>) has recently reported the magnetic transition of K-salt at about 0.8°K, corresponding to the magnetic transition of the copper ion from the antiferromagnetic to the paramagnetic state. If the magnetic contributions were included in the thermodynamic functions of Tables III and IV, the values of entropy would become greater than the present values by about 1.3 e. u., while the values of free energy would be scarcely changed. On the other hand, the corresponding magnetic transition of NH<sub>4</sub>-salt has not yet been reported. The NH4-salt has an isomorphous crystal structure with the K-salt, and has lattice constants nearly equal to that of the K-salt, that is,  $a_0 = 7.58 \text{ Å}$  and  $c_0 = 7.96 \text{ Å}$  for the former and  $a_0 = 7.45 \text{ Å}$  and  $c_0 = 7.88 \text{ Å}$ 

<sup>15)</sup> H. Suga, This Bulletin, 34, 426 (1961).

<sup>16)</sup> T. Haseda, private communication.

for the latter. The corresponding magnetic transition can, accordingly, also be expected for the NH<sub>4</sub>-salt around 1°K.

The Anomalous Heat Capacity of  $(NH_4)_2$ CuCl<sub>4</sub>·2H<sub>2</sub>O.—As is mentioned above,  $NH_4$ -salt gives a heat capacity anomaly. The excess heat capacity seems to rise at about  $120^{\circ}$ K, reaches a maximum value at  $200.50^{\circ}$ K, and then drops rather rapidly. The anomalous heat capacity,  $(AC_p)_{tr}$ , at this maximum temperature amounts to 13.24 cal. deg<sup>-1</sup> mol<sup>-1</sup>. On the other hand, K-salt does not show any such thermal anomaly. Accordingly, the thermal anomaly seems to be associated with a movement of the ammonium group of  $NH_4$ -salt.

The entropy of transition,  $\Delta S_{tr}$ , amounts to 1.945 e.u., and the enthalpy of transition,  $\Delta H_{tr}$ , to 387.7 cal. mol.<sup>-1</sup> The procedure for calculating these values may be worth mentioning in more detail, so it will be described below.

In order to calculate the entropy and the enthalpy of transition, as well as the heat capacity associated with the ordering phenomena of the ammonium group, it is necessary to subtract the "normal" heat capacity from the experimentally-measured one. An ammonium ion has an excess of twelve internal degrees of freedom compared with a potassium ion. First of all, the contributions from these internal and torsional vibrations must be subtracted from the experimental heat capacity. Infrared or Raman data are, unfortunately, not yet known for this substance. However, it may not be unreasonable to assume that the values of the vibrational frequencies of the ammonium group in NH4-salt will be replaced by those of other ammonium salts, in which the situation of the ammonium ion is similar to that of the present salt; i.e., each of ammonium ions is surrounded by a slightly distorted cube consisting of eight chlorine ions. The present crystal has an N-Cl distance of 3.35 Å and an N-N distance of 3.98 Å, distances which are comparable with those for ammonium chloride, where the N-Cl distance is 3.32 Å and the N-N distance, 3.87 Å. Thus, the values of the vibrational frequencies of the ammonium chloride crystal33 may be assumed for the present crystal in calculating the contributions arising from the ammonium groups. The adopted values are as follows:  $\nu_1 = 3040 \text{ cm}^{-1}$  (1),  $\nu_2 = 1670$  (2),  $\nu_3 = 3100$  (3),  $\nu_4 = 1403$  (3), and  $\nu_6$  (torsional) = 310 (3) (the numbers in parentheses indicate degeneracy).

Now,  $C_{int}(\mathrm{NH_4}^+)$ , the contribution from the internal vibrations and torsional oscillations of the ammonium ions to the heat capacity, can be calculated by using the Einstein function:

$$C_{int}(NH_4^+) = 2R \sum_i d_i \frac{x_i^2 e^{-x_i}}{(1 - e^{-x_i})^2}$$
 (1)

where  $d_i$  is the degeneracy of an *i*-th mode of vibration and  $x_i = h \nu_i/kT$ . The  $\Delta C_P$  (anomal) =  $C_P$  (NH<sub>4</sub>-salt) -  $C_{int}$  (NH<sup>+</sup><sub>4</sub>) -  $C_P$  (normal) quantity should be approximately the extra heat capacity contribution from the orientational motion of the ammonium ion as a whole. Usually the  $C_P$  (normal) quantity is estimated graphically rather arbitrarily. In the present case, however, the anomalous heat capacity extends over a considerable temperature range, and there is some latitude in drawing the normal heat capacity of the ammonium salt.

Osborne and Westrum<sup>17,18</sup>) have assumed that the lattice contribution to the heat capacities of UO2 and NpO2 equals the heat capacity of the isomorphous diamagnetic, ThO<sub>2</sub>, in estimating the anomalous magnetic contribution, and also, in another example, that the heat capacity of ThF<sub>4</sub> represents the lattice contribution for UF<sub>4</sub>. This kind of assumption is not tenable for the present case, however, since at a low temperature the observed heat capacity of K-salt exceeds that of NH<sub>4</sub>-salt, and a high temperature the situation is reversed. Stout and Catalano<sup>19)</sup> have applied a law of corresponding states in order to estimate the normal heat capacity of antiferromagnetic MnF<sub>2</sub>, FeF<sub>2</sub>, COF<sub>2</sub> and NiF<sub>2</sub> by utilizing the heat capacity data of isomorphous, diamagnetic ZnF<sub>2</sub>. Although the difference in structural parameters between the present two crystals is not very large,60 the crystal structure of these salts is too complicated to apply such a simplified treatment in the present case.

In order to carry out a tentative but rather

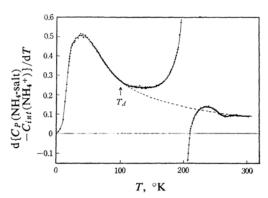



Fig. 5.  $d\{C_P(NH_4-salt)-C_{int}(NH_4^+)\}/dT$  vs. temperature plot for  $(NH_4)_2CuCl_4\cdot 2H_2O$  crystal.

<sup>17)</sup> D. W. Osborne and E. F. Westrum, Jr., J. Chem. Phys., 21, 1884 (1953).

<sup>18)</sup> H. R. Lohr, D. W. Osborne and E. F. Westrum, Jr., J. Am. Chem. Soc., 76, 3837 (1954).

<sup>19)</sup> J. W. Stout and E. Catalano, J. Chem. Phys., 23, 2013 (1955).

agreeable treatment for estimating the normal heat capacity of the NH<sub>4</sub>-salt, the following procedure was adopted. The differential quantity,  $d\{C_P(NH_4-salt)-C_{int}(NH_4^+)/dT,$ was plotted against the temperature over the entire temperature range; the results are drawn in Fig. 5. The corresponding value for K-salt,  $dC_P(K-salt)/dT$ , is given in Fig. 6 for the sake of comparison. This procedure magnifies the effect of the phase transition on If there is no heat capacity the graph. anomaly, the behavior of the  $dC_P/dT$  in the NH<sub>4</sub>-salt should be similar to that of K-salt, which is a monotonous function of the temperature.

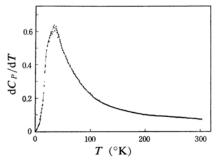



Fig. 6.  $dC_P(K\text{-salt})/dT$  vs. temperature plot for  $K_2CuCl_4 \cdot 2H_2O$  crystal.

There is also some latitude in drawing the dotted curve in Fig. 5, which represents the trend of the normal heat capacity of the NH<sub>4</sub>salt. However, there are at least two restrictions to eliminating some of the arbitrariness involved. One is that the curve corresponding to the normal heat capacity, the dotted curve in Fig. 5, must be a monotonously decreasing function; the other is that the normal heat capacity obtained by integrating the differential quantity should not exceed the value,  $C_P(NH_4$ salt)  $-C_{int}(NH_4^+)$ , at any temperature. This means that the anomalous heat capacity,  $\Delta C_P$  (anomal), can not be negative. Consequently, the normal heat capacity at  $T^{\circ}K$  was calculated as follows:

$$C_P$$
(normal) at  $T^{\circ}$ K  
={ $C_P$ (NH<sub>4</sub>-salt) -  $C_{int}$ (NH<sub>4</sub>+)} at  $T_d^{\circ}$ K  
+  $\int_{T_d}^T \frac{dC_P$ (normal)}{dT} dT (2)

where  $T_d$  is the temperature at which the  $dC_P(\text{normal})/dT$  curve deviates from the  $d\{C_P(\text{NH}_4\text{-salt}) - C_{int}(\text{NH}_4^+)\}/dT$  curve. The anomalous heat capacity, estimated by using Eqs. 1 and 2 and the experimental heat capacity data, is shown in Fig. 7. This curve presumably corresponds to the lower limit of the anomalous heat capacity, in view of the

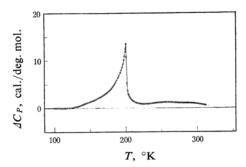



Fig. 7. Anomalous heat capacity of (NH<sub>4</sub>)<sub>2</sub>CuCl<sub>4</sub>· 2H<sub>2</sub>O around 200.50°K.

two assumed requirements mentioned above. Above 300°K the dotted curve in Fig. 7 was extrapolated somewhat arbitrarily. The contribution from this part to the entropy of the transition amounts merely to 2.5 per cent of the total. The values of  $\Delta S_{tr}$  and  $\Delta H_{tr}$  were then calculated from the  $\Delta C_P$  (anomal) versus temperature curve.

## Discussion

In order to discuss the nature of the phase transition of NH<sub>4</sub>-salt, it is desirable to compare with each other the crystal structures of the two crystals.<sup>6)</sup> The crystallographic data are summarized in Tables V, while the pro-

Table V. Crystallographic data of NH<sub>4</sub>-salt and K-salt<sup>6</sup>) (NH<sub>4</sub>)<sub>2</sub>CuCl<sub>4</sub>·2H<sub>2</sub>O 
$$E_2$$
CuCl<sub>4</sub>·2H<sub>2</sub>O  $E_4$ CuCl<sub>4</sub>·2H<sub>2</sub>O  $E_4$ CuCl<sub>4</sub>·2H<sub>2</sub>O  $E_4$ CuCl<sub>4</sub>·2H<sub>2</sub>O  $E_4$ CuCl<sub>4</sub>·2H<sub>2</sub>O  $E_4$ Cu  $E_4$ 

jections on the (010) and (001) planes of the crystal structure of NH<sub>4</sub>-salt are depicted in Figs. 8 and 9. As has been mentioned already, each ammonium ion is surrounded by a slightly distorted cube consisting of eight chlorine ions. The N-Cl and N-N distances in the NH<sub>4</sub>-salt are comparable to those of the ammonium chloride crystal. Therefore, an orientational order-disorder-type phase transition associated with the ammonium ions in ammonium chloride may also be expected for this NH<sub>4</sub>-salt.

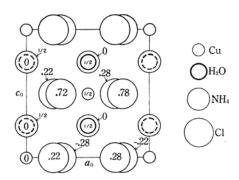



Fig. 8. A projection on the (010) plane of the crystal structure of  $(NH_4)_2CuCl_4 \cdot 2H_2O$  (after Wyckoff).

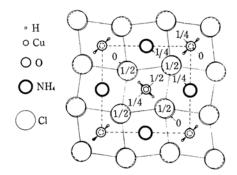



Fig. 9. A projection on the (001) plane of the crystal structure of (NH<sub>4</sub>)<sub>2</sub>CuCl<sub>4</sub>·2H<sub>2</sub>O.

Itoh and Kamiya<sup>20)</sup> have recently reported on the temperature variation of the proton nuclear magnetic resonance spectra of the NH<sub>4</sub>-salt and have observed a motional narrowing associated with the protons of the ammonium group at about 150°K. They found that the situation of the barrier height hindering the flipping motion of the ammonium ion is very similar to that with ammonium chloride. If the nature of the transition of this crystal is very similar to that of the ammonium chloride, the entropy of transition could amount to  $2.68 (2R \ln 2)$  e. u. The experimental value is, however, 1.945 e. u., about two thirds of 2.68 e. u.

In the case of ammonium chloride, all chlorine ions are equivalent with respect to the NH<sub>4</sub><sup>+</sup> ion, while for the present crystal, Itoh et al.<sup>21)</sup> have reported that there are two kinds of chlorine ions; one makes a hydrogen bond with the proton of crystalline water, while the other does not. Other differences from the ammonium chloride are that the

present crystal has a tetragonal symmetry and that the N-N distance is quite different in each direction. The N-N distance along the [001] axis is 3.98 Å, while along the [110] axis it is 5.36 Å. Thus, only along the direction of the c-axis is the N-N distance comparable with that of ammonium chloride.

In other words, the principle of the framework of the present crystal is that the NH<sub>4</sub>Cl is diluted by CuCl<sub>2</sub>·2H<sub>2</sub>O and the interaction between the ammonium ions is weakened twodimensionally. In such a pseudo-linear chain of NH<sub>4</sub><sup>+</sup> ions, the order parameter describing the randomness with respect to the orientation of ammonium ions is expected to change much less co-operatively than a three-dimensionallyarranged system, as in the case of ammonium chloride. The extraordinary broadness of the anomaly, as well as the much smaller jump of  $C_P$  at the transition point, may be ascribed to the weakened interaction between the ammonium ions in this crystal. The maximum anomalous heat capacity of the present crystal amounts merely to 13.24 cal. deg<sup>-1</sup> mol<sup>-1</sup>, while in the case of ammonium chloride<sup>1)</sup> it reaches about 159 cal. deg-1 mol-1.

It should be mentioned that above the transition point there is a rather broad and small hump in the  $\Delta C_P$  (anomal) versus temperature curve. It is more magnified in the curve of the derivative of the heat capacity than in the heat capacity curve itself (see Fig. 5). If the residual anomalous part of the heat capacity curve above the phase transition point is exclusively due to the short range order remaining, it may not show such a maximum point. Therefore, we may assume, as one explanation, that the hump arises from the Shottky anomaly, based on the population difference of the individual ammonium ion between the two sites of different energies, associated with the different chlorine ions in the disordered state; in one possible orientation of the ammonium ion, all four protons are directed to the chlorine ions hydrogen-bonded with the crystalline water, while in the other all protons are directed to the free chlorine ions. If the hump is ascribed to the Shottky anomaly, the energy difference between the two possible orientations of the ammonium ions is calculated to be about 1.3 kcal. mol<sup>-1</sup>.

We have not given here the theoretical treatment needed to interpret the transition mechanism of the pseudo one-dimensional ionic array of the present crystal. In order to develop such a treatment, the ordered structure of ammonium ions must be known precisely. Because of the rather small value of the apparent transition entropy  $(=2/3 \times 2R \ln 2)$ , however, it is supposed that there still

<sup>20)</sup> J. Itoh and Y. Kamiya, J. Phys. Soc. Japan, 17, Supplement B-I, 512 (1962).

<sup>21)</sup> J. Itoh, R. Kusaka, R. Kiriyama and Y. Saito, Memoirs of the Institute of Scientific and Industrial Research, Osaka Univ., XIV, 1 (1957).

June, 1965]

remains a much larger degree of disorder with respect to the orientation of ammonium groups in the low temperature phase. Further investigations of, for example, neutron diffraction, neutron inelastic scattering, or some other spectroscopic techniques will be useful in understanding more quantitatively the nature of the phase transition.

### Summary

The heat capacity of copper potassium chloride dihydrate and copper ammonium chloride dihydrate crystals have been measured between 13 and 310°K. The latter crystal shows a λ-type anomaly in the heat capacity curve which seemed to be due to the orientational order-disorder process of ammonium groups. The heat capacity of (NH<sub>4</sub>)<sub>2</sub>CuCl<sub>4</sub>·2H<sub>2</sub>O exhibits a maximum value of 76.290 cal. deg. <sup>-1</sup> mol <sup>-1</sup> at 200.50°K. By plotting the temperature derivative of heat capacities, the normal contribution from the lattice to the heat capacity

of  $(NH_4)_2CuCl_4 \cdot 2H_2O$  has been estimated. In this case the corresponding values for  $K_2CuCl_4 \cdot 2H_2O$  has been taken as a reference. By subtracting the estimated normal heat capacity from the experimentally measured one, approximate values of the entropy change,  $\Delta S = 1.945$  cal. deg.<sup>-1</sup> mol<sup>-1</sup>, and the heat capacity jump,  $\Delta C_P = 13.24$  cal. deg<sup>-1</sup> mol<sup>-1</sup>, associated with the orientational ordering of the linearly-arranged ammonium ion system have been given.

The values of the heat capacity, entropy, enthalpy, and Gibbs free energy of both crystals have been tabulated at selected temperatures. The standard values of the entropy and enthalpy are:  $K_2CuCl_4 \cdot 2H_2O$ ,  $S^0 = 84.95$  cal.  $deg^{-1} mol^{-1}$ ,  $H^0 - H_0^0 = 11980$  cal.  $mol^{-1}$ ;  $(NH_4)_2 \cdot CuCl_4 \cdot 2H_2O$ ,  $S^0 = 92.30$  cal.  $deg^{-1} mol^{-1}$ ,  $H^0 - H_0^0 = 14220$  cal.  $mol^{-1}$ .

Department of Chemistry Faculty of Science Osaka University Toyonaka, Osaka